Outline

• Motivation and Purpose
• System Versus Chip ESD
• The ESD Standards Gap
• Polymer Voltage Suppressor Characterization
• Bridging Standards Gap with TLP: GaAs RF Switch
• TLP for OEM Cable ESD
• Summary/Future
Motivation and Purpose

• ESD Characterization of POLYMER VOLTAGE SUPPRESSORS (PVS)

• A TLP method for specifying PVS products to improve Electronic Products:
 — Reliability
 — Mean time before failure
 — ESD Compliance
Motivation and Purpose

• Use of TLP to Bridge the Gap Between Chip and System level ESD Standards

• Increase the use of TLP for ESD equivalent test for:
 — System level ESD Failure Voltage
 — Cable ESD Failure Voltage
 — ESD Compliance using PVS components
System Level ESD Constraints

• Driven by:
 – Smaller semiconductors
 – High frequencies
 – Escalating numbers of signal lines

• ESD is a performance bottleneck
 – Limited chip area and board space
 – Capacitance loads
Industry ESD Constraints

• ESD is getting worse
 ─ On chip protection is failing system level ESD

• RF products need reliability:
 ─ Cell phones
 ─ SiGe applications
 ─ GHz servers
 ─ GaAs RF switches
 ─ VCSEL applications

• There is a gap between chip and board level ESD
 ─ 8 kV IEC has 6X more current than 8 kV HBM
Historically Chips were tested at 2000 V
 - 2000 V HBM = 1.3 Amp
 - 1.3 Amp is equivalent to 439 V IEC

Now: 8 kV IEC is equivalent to 36 kV HBM
8 kV IEC = 24 Amp versus 5.3 Amp HBM
That is the problem

TLP bridges the gap
The Standards Gap: On Chip Versus IEC

TLP Bridges the Gap: TLP Correlates to Both

Historical Trend

TLP Bridges the Gap: TLP Correlates to Both
PVS Fits RF ESD Constraints

- Capacitance < 150 fF
- Multiple line ESD protection
- Bipolar
- Low profile, ≤10 mils (0.25 mm)
- Pico-second ESD response
- Zero board space on a connector
- Substrateless Surface Mount
Polymer Voltage Suppression Devices

Substrateless Surface Mount Device

```
<table>
<thead>
<tr>
<th>0603 ID#</th>
<th>Cp (fF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T484A/2/7</td>
<td>102</td>
</tr>
<tr>
<td>T484A/2/9</td>
<td>107</td>
</tr>
<tr>
<td>T484A/2/45</td>
<td>70</td>
</tr>
<tr>
<td>T484A/2/99</td>
<td>118</td>
</tr>
<tr>
<td>T484A/2/98</td>
<td>119</td>
</tr>
<tr>
<td>T484A/2/95</td>
<td>115</td>
</tr>
<tr>
<td><strong>Average</strong></td>
<td><strong>105</strong></td>
</tr>
</tbody>
</table>
```

EPI-FLO™ PVS 0603 Surface Mount Device Capacitance
TLP Component Testing

ESD Signal Generator

DUT

Signal Attenuator

8 GSa / Second Digital Oscilloscope

TLP set-up for PVS and RF components
Surface Mount Voltage Characterization

- **Vtrig**: Voltage is increased until device turns on
- **Endurance**: 20x at 600V ~ equivalent to 8kV IEC

<table>
<thead>
<tr>
<th>Device</th>
<th>Endurance Test</th>
<th>Vtrig Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vtrig</td>
<td>600V 20th pulse, Vclamp</td>
<td>Vclamp at Trigger</td>
</tr>
<tr>
<td>Volts</td>
<td>$V_{(40\text{ns})}$</td>
<td>$V_{(4\text{ns})}$</td>
</tr>
<tr>
<td>100</td>
<td>43</td>
<td>99</td>
</tr>
<tr>
<td>200</td>
<td>40</td>
<td>181</td>
</tr>
<tr>
<td>400</td>
<td>48</td>
<td>129</td>
</tr>
</tbody>
</table>

100, 200, 400 Vtrig Devices
TLP PVS Trigger Characterization

200 Volts input

4 ns, 38V

Vclamp

36 ns, 24V

200 Vtrigger 0603 Device
600 V TLP PVS Characterization

600 V, 20X Endurance Test

Volts (100V/div)

Time (10ns/div)

Vclamp

4 ns, 37V

36 ns, 27V

TLP .6 kV Equivalence to 8 kV IEC 6-10004-2
TLP/ESD System Testing

ESD Gun is Added to TLP Testing for Correlation
GaAS RF Switch Tested With and Without PVS
TLP/ESD Test for GaAs RF Switch

IV Trace: Post ESD/TLP damage to switch is change in leakage current when device is powered.

TLP/ESD gun Voltage Input on signal line with and without PVS device protection.
Step 1: GaAs RF Switch ESD Gun

- Zap Gun: IEC 6-10004-2
- Power device
- 10% Change in current at RFC = damaged device

<table>
<thead>
<tr>
<th>Vin</th>
<th>Pulse #</th>
<th>I (µA)</th>
<th>I (RFC) (µA)</th>
<th>I (RFC1) (µA)</th>
<th>I (RFC2) (µA)</th>
<th>Open Circuit I (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100V</td>
<td>1x</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5x</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10x</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20x</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>281</td>
<td>0</td>
</tr>
<tr>
<td>300V</td>
<td>1x</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>280</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5x</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>279</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10x</td>
<td>278</td>
<td>278</td>
<td>278</td>
<td>278</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20x</td>
<td>277</td>
<td>277</td>
<td>277</td>
<td>277</td>
<td>0</td>
</tr>
<tr>
<td>400v</td>
<td>1x</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2x</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>276</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5x</td>
<td>277</td>
<td>248</td>
<td>248</td>
<td>248</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>10x</td>
<td>277</td>
<td>226</td>
<td>226</td>
<td>226</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>20x</td>
<td>277</td>
<td>214</td>
<td>214</td>
<td>214</td>
<td>268</td>
</tr>
</tbody>
</table>
Step 1: ESD Gun Test GaAs RF Switch

- **Pulse**
 - 1X, 5X, 10X, 20X
 - Ramp V by 100V

- **Failure = 10% change in RFC current**

Failed Current < 253 µA
Step 2: TLP Test GaAs RF Switch

- Pulse
 - 1X, 5X, 10X, 20X
 - Ramp V by 100V

- Failure = 10% change in RFC current

Failed Current = 158 µA
Final Step: 8 kV IEC Test with PVS

- Select PVS device $V_{trig} < 200$V
- Solder PVS device on board
- Zap 20x+ at 8 kV for ESD compliance

20 Pulses = IEC Requirement

GaAs Switch With 100Vtrig PVS Undamaged

Failure = 158 µA
TLP Test Method Summary

1. **IEC Unprotected Switch Failure 400V**
2. **TLP Unprotected Switch Failure 200V**
3. **PVS Protected Switch passes 50 8kV IEC pulses**

- **minizap**
- **TLP**
- **Minizap w EPI-Flo™**

Voltage In

Current Output

1 10 100 1000 10000
VCSEL HBM/TLP Test Result

<table>
<thead>
<tr>
<th>Initial Voltage</th>
<th>Current In</th>
<th>Current Out</th>
<th>V4ns</th>
<th>V40ns</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 V DC only</td>
<td>12.19 mA</td>
<td>332.40 µA</td>
<td>N/A V</td>
<td>N/A V</td>
</tr>
<tr>
<td>10 V pulse</td>
<td>12.00 mA</td>
<td>324.00 µA</td>
<td>9.33 V</td>
<td>9.69 V</td>
</tr>
<tr>
<td>15 V pulse</td>
<td>12.00 mA</td>
<td>324.00 µA</td>
<td>13.27 V</td>
<td>15.02 V</td>
</tr>
<tr>
<td>20 V pulse</td>
<td>12.06 mA</td>
<td>326.00 µA</td>
<td>15.52 V</td>
<td>18.76 V</td>
</tr>
<tr>
<td>25 V pulse</td>
<td>12.05 mA</td>
<td>326.80 µA</td>
<td>18.56 V</td>
<td>21.46 V</td>
</tr>
<tr>
<td>30 V pulse</td>
<td>12.06 mA</td>
<td>326.00 µA</td>
<td>21.01 V</td>
<td>24.20 V</td>
</tr>
<tr>
<td>35 V pulse</td>
<td>12.03 mA</td>
<td>325.00 µA</td>
<td>23.12 V</td>
<td>26.19 V</td>
</tr>
<tr>
<td>40 V pulse</td>
<td>12.02 mA</td>
<td>324.20 µA</td>
<td>25.06 V</td>
<td>27.39 V</td>
</tr>
<tr>
<td>45 V pulse</td>
<td>12.00 mA</td>
<td>324.00 µA</td>
<td>27.36 V</td>
<td>29.76 V</td>
</tr>
<tr>
<td>50 V pulse</td>
<td>12.01 mA</td>
<td>322.60 µA</td>
<td>29.17 V</td>
<td>32.46 V</td>
</tr>
<tr>
<td>55 V pulse</td>
<td>11.99 mA</td>
<td>304.40 µA</td>
<td>31.85 V</td>
<td>34.52 V</td>
</tr>
<tr>
<td>60 V pulse</td>
<td>12.02 mA</td>
<td>254.60 µA</td>
<td>33.69 V</td>
<td>36.49 V</td>
</tr>
<tr>
<td>65 V pulse</td>
<td>12.01 mA</td>
<td>149.20 µA</td>
<td>35.56 V</td>
<td>37.88 V</td>
</tr>
<tr>
<td>70 V pulse</td>
<td>12.02 mA</td>
<td>74.40 µA</td>
<td>37.50 V</td>
<td>39.23 V</td>
</tr>
<tr>
<td>75 V pulse</td>
<td>12.05 mA</td>
<td>34.65 µA</td>
<td>39.37 V</td>
<td>41.29 V</td>
</tr>
</tbody>
</table>

Photo Diode Current Output Showed PVS with Vtrig < 60 V Required for 1000 V HBM
Cable ESD Tests Need Standards

- Cable ESD varies:
 - Automotive:
 - 25 kV IEC
 - 10 kV TLP
 - Giga bit server:
 - 600 foot cable charged to 3kV

600V TLP test of RJ-45 connector with Magnetics shows no protection
Cable ESD PVS Specs ≠ IEC ESD

For Cable ESD for Server application, PVS Device on RJ-45 connector needs to be tested with 600 foot cable charged to 3 kV.

PVS installed on RJ-45 removes ~80% of 8 kV equivalent ESD TLP pulse.
The Future

• Low Capacitance PVS devices remove performance barriers for:
 — Cell phones, Giga bit servers, PDA’s
 — SiGe, GaAs, InP, semiconductors
 — Tunneling Magneto Resistive Heads

• PVS devices open doors for future sensitive semiconductors removing ESD as a potential barrier to Market entry
Summary

• The gap between chip and system level ESD standards needs a TLP standard

• TLP/ESD characterization using femto Farad Polymer Voltage Suppression devices provides 8 kV IEC reliability for RF products and components

• PVS devices open the door for future sensitive semiconductors removing ESD as a potential barriers to Market entry